Zennaro Thomas
Licini Valentin
5ISS - B11

INSA

TOULOUSE

Cloud practical works report

Theoretical Part

tiny.cc/TP_Cloud

1) Similarities and differences between the main virtualisation hosts (VM et CT)

Criteria

Virtual Machine

Container

Virtualization cost

expensive ; big core
allocation when VM is
running

cheaper ; only one OS to
maintain

usage of CPU and network

heavy ; connected directly to
the network ; big use of
storage ; memory
management

use only the required
resources ; connected
through a bridge ; memory
management not good

Security of the app ressources provisioning ; No easy ressources
more isolated ; security provisioning ; no security
control is present when the | provided as most
OS is attacked applications run on a single
OS
Performances worse better ; can virtually run

anywhere

Tooling for continuous
integration support

retrieving of data loss better
; continuous deployment is
not possible and testing is
not done frequently

continuous deployment is
possible and testing with
different apps is carried out ;
Applications are easily
portable as they are stored
in virtual containers

User preferences

User

Container

Virtual Machine

Developers

continuous integration
portability
same environment

Administrators

Security
management
network configuration

Zennaro Thomas
Licini Valentin
5ISS - B11

2) Similarities and differences between the existing CT types

INSA

TOULOUSE

CT Technologies | Application isolation and | Containerization | Tooling
resources, from a | level
multi-tenancy point of view
LXC/LXD Good management of high level REST API ;
memory use ; running of LXC offers a rich set
multiple isolated Linux of tools that are
virtual environments (VE) almost identical to
on a single control host ; It your traditional Linux
allows you to not only machine ;
isolate applications, but offers a
even the entire OS comprehensive set
of tools for creating,
running, and
managing LXC
containers on the fly
Docker provides a lightweight high level Docker containers
virtualization solution to run | (engine) aim to be even
processes in isolation lighter weight in
order to support the
fast, highly scalable,
deployment of
applications with
microservice
architecture
Rocket allows users to apply high level ensures portability:
different configurations rkt is designed to run
(like isolation parameters) ; App Container
rocket’s architecture Images (ACI) ;
means that each pod It is inherently
executes directly in the secure, using
classic Unix process model signature verification
in a self-contained, isolated and privilege
environment separation by default
OpenVZ Isolated applications but high level Allow for a light and
partial cryp, fluid memory resource efficient
use, use of linux based
only linux containers and containers.
they rely on one kernel Optimized for server
only; so an error on one purpose.
container shut the others.

Zennaro Thomas ‘
Licini Valentin INSA

5ISS - B11 TOULOUSE

4) Similarities and differences between Type 1 & Type 2 of hypervisors’
architectures

Type 1 : Bare-metal

Type 1 hypervisors run directly on the hardware. It is completely independent from the
Operating System (OS).

A Type 1 hypervisor provides excellent performance and stability since it does not run inside
any operating system. The hypervisor is small as its main task is sharing and managing
hardware resources between different operating systems

Type 1 hypervisors are an OS themselves, a very basic one on top of which you can run
virtual machines. If there is a problem with one of the VM, it doesn’t affect the other VMs.

Type 2 : hosted hypervisors

A Type 2 hypervisor is installed on an existing OS. It's a hosted hypervisor, seeing as it
relies on the host machine’s OS to undertake certain operations like managing calls to the
CPU, network resources, memory and storage. As Type 2 hypervisors are linked with the
OS layer they can support a wide range of hardware.

Any problems in the OS affects the entire system as well even if the hypervisor running
above the base OS is secure.

Conclusion
r OpenStack belongs to Type 1 architecture.

1 VirtualBox belongs to Type 2 architecture.

Zennaro Thomas ‘
Licini Valentin INSA

5ISS - B11 TOULOUSE

Practical Part

Tasks related to objectives 4 and 5
First part: Creating and configuring a VM

In this first part, we are asked to create a VM linux according to some specifications given.

G o N e O

Nouvelle Configuration Cublier Afficher

@ Geénéral @ Prévisualisation

MNom : Linux&4

Systéme d'exploitation : Linux 2.6 / 3.x / 4.x (84-bit)

E‘ System

Mémoire vive : 512 Mo

Ordre d'amorgage : Disquette, Optique, Disque dur

Accélération : WT-x/AMD-V , Pagination imbriquée, Paravirtualisation
KvM

@ Affichage

Mémoire vidéo : 16 Mo

Contréleur graphique : YMSVGA

Serveur de bureau & distance @ Désactivé

Enregistrement : Désactivé

Stockage

Contrdleur : IDE

Maitre secondaire IDE : [Lecteur optique] Vide
Contréleur : SATA

Port SATA O : disk.vmdk (Mormal, 18,00 Gio)

fn Audio

Pilote hite : Windows DirectSound
Contréleur : ICH ACS7

@ Réseau

Interface 1: Intel PRO/1000 MT Desktop (MAT)
(9 use

Contréleur USE : OHCI

Filtres de périphérique : 0 (0 actif)

I:l Dossiers partagés

Second part: Testing the VM connectivity

The IP addresses are as follows:
e |P of the physical machine: 10.1.5.89/16
e Virtual machine IP: 10.0.2.15/24

As we can see from the following snapshots:

user@tutorial-vm:~5 ifconfig

enp0s3: flags=4163-11P BROADCAST ,RUNNING,MULTICAST>= mtu 1500
inet(10.0.2.15 » netmask 255.255.255.8 broadcast 10.8.2.255
inet6 TEeUTap0:27ff:feef:be24 prefixlen 64 scopeid Ox20<link=>

ether 08:00:27:ef:be:24 txqueuelen 1000 (Ethernet)

RX packets 18168 bytes 13512864 (13.5 MB)

RX errors & dropped 8 overruns @& frame 0

TX packets 1157 bytes 86045 (86.0 KB)

TX errors 8 dropped 8 overruns @ carrier & collisions 8

Zennaro Thomas ‘
Licini Valentin INSA

5ISS - B11 TOULOUSE

DNS propre & la connexion. . . : insa-toulouse.fr
IPvE de liaison locale.: fe8G:: -

IPv4.

de sous-ré

Both addresses are class A but are part of separate subnets.

We conclude that the host machine is part of the GEI subnet established by the INSA
administrators who have a class A address. From this, virtualbox has created a subnet for
virtual machines such as ours.

Connectivity test:

VM -> Host Ok
VM -> Distant Host Ok
Distant Host -> VM n/a
Host -> VM n/a

Examples of connectivity test using ping:

Fichier Edition Affichage Rechercher Terminal Aide
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.8.1 netmask 255.0.0.0
ineté ::1 prefixlen 128 scopeid 6x18<host>
loop txqueuelen 1008 (Boucle locale)
RX packets 40 bytes 3894 (3.8 KB)
RX errors @ dropped @ overruns @ frame @
TX packets 40 bytes 3894 (3.8 KB)
TX errors ® dropped © overruns @ carrier ® collisions @

user@tutorial-vm:~$ ping 10.1.5.89
PING 10.1.5.89 (1 89) 56(84) bytes of data.
64 bytes from 16 : icmp_seg=1 ttl=127 time=0.
64 bytes from i _seq=2 ttl=127
64 bytes from 1 seq=3 ttl=127 ti
64 bytes from 1
64 bytes from 16
64 bytes from
64 bytes from 1
64 bytes from 1
AC
- 10.1.5.89 ping statistics ---
8 packets transmitted, 8 received, 8% packet loss, time 7019ms
rtt min/avg/max/mdev = 0.646/0.961/1.083/0.138 ms
user@tutorial-vm:~$

= @, perdus = 4 (perte 100%),

We infer that the subnet of the VM is connected to the network of the host machine through
virtualbox which acts as a router. Since the subnet is private, it cannot be reached from
outside.

Third part: Set up the “missing” connectivity
To perform the port forwarding necessary for the symmetric operation of our VM, we must
configure a rule like suis, in virtualbox:

@host = PC address (insa) @guest = @VM port 22

We want to connect via PUTTY in ssh (listening on port 22) on the virtual machine:

10.1.5.89:800 ----> 10.0.2.15:22

Zennaro Thomas
Licini Valentin
5ISS - B11

INSA

TOULOUSE

Fourth part: VM duplication

With an adequate “right-click” on our VM on virtualbox, we can duplicate it with the same
parameters.

Fifth part: Docker containers provisioning

In this part, we will install docker in our previous VM already configured. We get the ubuntu
image, then we launch it. Inside we’re already root so we don’t need to use the sudo
command.

Then we retrieve the docker @IP : 172.17.0.2.

After that, we ping Google.com (which is an Internet resource) to test the connectivity with
the Internet. As we see on the screen below, it works.

root@d@c4f47389chbo: /# ping google.com

PING google.com (172.217.18.238) 56(84) bytes
64
64

of data.

217.18.238):
217.18.238):
217.18.238):
217.18.238):
217.18.238):

ttl=113
ttl=113
ttl=113
ttl=113
ttl=113

from
from
from
from
from

bytes
bytes
bytes
bytes
bytes

par10s16-in-f238.
parl0s108-in-f238.
par1@s10-in-f238.
parl0s10-in-f238.
par1@s16-in-f238.

le108.net (172.
lel00.net (172.
le108.net (172.
lel100.net (172.
le108.net (172.

icmp_seqg=1
icmp_seq=2
icmp_seq=3
icmp_seq=4
icmp_seqg=5

|
LT

64
64
64
Y c

b i R e
(LR RN

Then, we ping the VM from Docker and it works too (see the screen below).

root@@c4r47389cbo: f# ping 10.0.2.15

PING 10.6.2.15 (10.0.2.15) 56(84) bytes of
64 bytes from 10.0.2.15: icmp _seg=1 ttl=64
64 bytes from 10.0.2.15: icmp seq=2 ttl=64
64 bytes from 10.0.2.15: icmp seg=3 ttl=64
64 bytes from 10.0.2.15: icmp segq=4 ttl=64
64 bytes from 10.0.2.15: icmp _seqg=5 ttl=64

data.

time=0.054
time=0.094
time=0.076
time=0.073
time=0.077

Finally, we test the connectivity from the VM to the container and it works well as follow:

'user@tutorial-vm:h$ ping 172.17.6.2
PING 172.17.6.2 (172.17.0.2) 56(84) bytes of data.
64 bytes from 172.17.0.2: icmp seqg=1 ttl=64 time=0.

64
64
64
64
J“.C

bytes
bytes
bytes
bytes

from
from
from
from

172.17.8.2:
172.17.8.2:
1T2 AT . Bo&:
172.17.8.2:

icmp _seqg=2
icmp seq=3
icmp seq=4
icmp seqg=5

| --- 172.17.68.2 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss,

rtt min/avg/max/mdev =

ttl=64
ttl=64
ttl=64
ttl=64

time=08.
time=08.
time=08.
time=0.

0.054/0.062/0.066/0.011 ms

time 4877ms

Zennaro Thomas ‘
Licini Valentin INSA

5ISS - B11 TOULOUSE
The docker works in bridge so it’s on the same network as the host so ping works.
After that, we created a new instance namedr CT2 in which we install the nano editor.

After that, we created a snapshot of the container CT2.

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
3d8eb4cedds ubuntu "/bin/bash" 3 minutes ago Up 3 minutes 0.0.0.0:2223->22/tcp ct2
Bc4f47389cho ubuntu "/bin/bash" 13 minutes ago Up 12 minutes ctl
user@tutorial-vm:~5 sudo docker commit b3d8eb4ced4d5 dockerPictures:versionil

invalid reference format: repository name must be lowercase
user@tutorial-vm:~$ sudo docker commit b3d8eb4cead5 dockerpictures:versionil
sha256:a1c223730d9b8b3e3fed1001cc252657d38c2c5905895d69c343bfbo75a120de
user@tutorial-vm:~$ I

We execute a new instance CT3 using the previous snapshot. The list of images is
presented below.

user@tutorial-vm:~/ u$ sudo docker images
REPOSITORY TAG IMAGE ID CREATED
dockerpictures version2 52ccefBbbo3a 27 seconds ago

dockerpictures versionl alc223730d9b 26 minutes ago
ubuntu latest 9140108b62dc 13 days ago

We see in the CT3 that we actually nano install. This is normal, because when taking the
snapshot of CT2 all present resources are kept, so the nano editor is also present.

Zennaro Thomas ‘
Licini Valentin INSA

5ISS - B11 TOULOUSE

Expected work for objectives 6 and 7

First part : CT creation and configuration on OpenStack

The VM is attached to a private network and its @IP is 192.168.1.12. But when using
ifconfig: we only observe an IPV6 address : fe80::f816:3eff:fe43:bc08/64.

Second part: Connectivity test

We noticed that a ping request from the VM to the computer host didn’t work. We need to
put a gateway to ensure connectivity with the public network. We decided to put all our
Virtual machines in the same private network. The gateway will connect the public network
to the private network.

Then we test the connectivity between our VM with the outside using ssh and it perfectly
works.

Third part: Snapshot, restore and resize a VM

The resize operation consists in changing the flavor of a VM, thus allowing it to upscale or
downscale according to user needs. If we resize a running VM which has a bigger
configuration (RAM, SSD...) to a smaller config, we notice that the VM crashed. On the
contrary, it works (smaller to bigger). OpenStack can allocate new ressources on static way
but also in real time i.e. when VMs are running, that can not be the case with Virtual Box.

Making a snapshot of the VM means saving all its data to make another VM exactly the
same. When we use this snapshot to create a new VM, it has all what was installed in the
previous one, and its data.

Restoring the VM from the last backup erases all new data and changes made from that
backup.

Zennaro Thomas ‘
Licini Valentin INSA

51SS - B11 TOULOUSE
Expected work for objectives 8 and 9

OpensStack client installation

Part three: Deploy the Calculator application on OpenStack

In order to test in an only VM all the services, we need to do the steps below:

- In the CalculatorService.js file we have to modify the IP address by “localhost”.

- In the CalculatorService.js file the port has to be chosen between 50000 and 50050

- Having 4 terminal which are listening on each port associated to each sub-service
(SumService, SubService, MulService, DivService)

We create 5 VMs and each of them is going to implement one service between the 5
compute services. All of the VMs will be integrated in the same network.

lu-]
r

bc0e0adi-5c93-4364-581c-009chbcf29fb30
@ Active

» View Instance Details » Open Console BRI ilse

IF'ZID'BL'BQL'ZBL
il

& P20 L8091 °26)

For the VM which contains the calculator service, we need to put a floating IP in order to be
at the interface with the external user.

We have added a new security rule in order to open the 50005 port.

As shown on the screens below, the application is running well.

Zennaro Thomas ‘
Licini Valentin INSA

5ISS - B11 TOULOUSE

zennaro@insa-10580:~% curl -d "(5+6)*2" -X POST http://192.168.37.121:50005

result = 22

zennaro@insa-10580: ~

Listening on port : 50065
New request :

(5+6)*2 = 22

Then we used the nano editor to modify the Calculator file when it was running. After

restarting it, we observed that the change is visible : the sentence “mon gros” is added on
the terminal.

zennaro@insa-160580:~% curl -d "(5+6)*2" -X POST http://192.168.37.121:560005

salut mon grosresult = 22

Part four: Orchestrate the application deployment

In this part we are asked to do a similar operation that previously. On the VM, after installing
docker and the required tools (particularly the nodeds client), we make a new container
instance in which we put the 5 services. Then, we make a snapshot of this instance. We
create 4 more containers based on the previous snapshot. Then, each container is assigned
to a particular micro service. So, after launching the different services and changing the right
@IP on the CalculatorService file, we used the CalculatorService on the first container to
verify that it works. Furthermore, it also works when calling it from the VM itself.

Unfortunately, we didn’t have the time to automate the service deployment.

10

Zennaro Thomas ‘
Licini Valentin INSA

51SS - B11 TOULOUSE
Expected work for objectives 10 and 11

Part two: Deployment of the target topology

We decided to continue with Ubuntu images instead of alpine-node because we could reuse
the VM created in the previous part.

The built network is as follow:

182.168.18.0/24

Services

182.168.210.0/24

192.168.37.0/24 @

Part three: Configuration of the topology and execution of the services

We test the connectivity between the VM hosting the CalculatorService and the VM hosting
the SumService : no response. It's normal because we have 2 private networks.

The front-end machine doesn’t know where the service machines are on the internet, so it
sends frames to the default route, as known as the internet router. We have to define, in its
route table, which getaway to take when addressing the service machine's network. We use
the following command line:

sudo route add -net 192.168.18.0/24 gw 192.168.210.1

The calculator eventually works.

11

