
Zennaro Thomas
Licini Valentin
5ISS - B11

Cloud practical works report
tiny.cc/TP_Cloud

Theoretical Part

1) Similarities and differences between the main virtualisation hosts (VM et CT)

Criteria Virtual Machine Container

Virtualization cost expensive ; big core
allocation when VM is
running

cheaper ; only one OS to
maintain

usage of CPU and network heavy ; connected directly to
the network ; big use of
storage ; memory
management

use only the required
resources ; connected
through a bridge ; memory
management not good

Security of the app ressources provisioning ;
more isolated ; security
control is present when the
OS is attacked

no easy ressources
provisioning ; no security
provided as most
applications run on a single
OS

Performances worse better ; can virtually run
anywhere

Tooling for continuous
integration support

retrieving of data loss better
; continuous deployment is
not possible and testing is
not done frequently

continuous deployment is
possible and testing with
different apps is carried out ;
Applications are easily
portable as they are stored
in virtual containers

User preferences

User Container Virtual Machine

Developers continuous integration
portability
same environment

Administrators Security
management
network configuration

1

Zennaro Thomas
Licini Valentin
5ISS - B11

2) Similarities and differences between the existing CT types

CT Technologies Application isolation and
resources, from a
multi-tenancy point of view

Containerization
level

Tooling

LXC/LXD Good management of
memory use ; running of
multiple isolated Linux
virtual environments (VE)
on a single control host ; It
allows you to not only
isolate applications, but
even the entire OS

high level REST API ;
LXC offers a rich set
of tools that are
almost identical to
your traditional Linux
machine ;
 offers a
comprehensive set
of tools for creating,
running, and
managing LXC
containers on the fly

Docker provides a lightweight
virtualization solution to run
processes in isolation

high level
(engine)

Docker containers
aim to be even
lighter weight in
order to support the
fast, highly scalable,
deployment of
applications with
microservice
architecture

Rocket allows users to apply
different configurations
(like isolation parameters) ;
rocket’s architecture
means that each pod
executes directly in the
classic Unix process model
in a self-contained, isolated
environment

high level ensures portability:
rkt is designed to run
App Container
Images (ACI) ;
It is inherently
secure, using
signature verification
and privilege
separation by default

OpenVZ Isolated applications but
partial cryp, fluid memory
use,
only linux containers and
they rely on one kernel
only; so an error on one
container shut the others.

high level Allow for a light and
resource efficient
use of linux based
containers.
Optimized for server
purpose.

2

Zennaro Thomas
Licini Valentin
5ISS - B11

4) Similarities and differences between Type 1 & Type 2 of hypervisors’
architectures

Type 1 : Bare-metal

Type 1 hypervisors run directly on the hardware. It is completely independent from the
Operating System (OS).

A Type 1 hypervisor provides excellent performance and stability since it does not run inside
any operating system. The hypervisor is small as its main task is sharing and managing
hardware resources between different operating systems

Type 1 hypervisors are an OS themselves, a very basic one on top of which you can run
virtual machines. If there is a problem with one of the VM, it doesn’t affect the other VMs.

Type 2 : hosted hypervisors

A Type 2 hypervisor is installed on an existing OS. It’s a hosted hypervisor, seeing as it
relies on the host machine’s OS to undertake certain operations like managing calls to the
CPU, network resources, memory and storage. As Type 2 hypervisors are linked with the
OS layer they can support a wide range of hardware.

Any problems in the OS affects the entire system as well even if the hypervisor running
above the base OS is secure.

Conclusion

¤ OpenStack belongs to Type 1 architecture.

¤ VirtualBox belongs to Type 2 architecture.

3

Zennaro Thomas
Licini Valentin
5ISS - B11

Practical Part

Tasks related to objectives 4 and 5
First part: Creating and configuring a VM

In this first part, we are asked to create a VM linux according to some specifications given.

Second part: Testing the VM connectivity

The IP addresses are as follows:

● IP of the physical machine: 10.1.5.89/16
● Virtual machine IP: 10.0.2.15/24

As we can see from the following snapshots:

4

Zennaro Thomas
Licini Valentin
5ISS - B11

Both addresses are class A but are part of separate subnets.

We conclude that the host machine is part of the GEI subnet established by the INSA
administrators who have a class A address. From this, virtualbox has created a subnet for
virtual machines such as ours.

Connectivity test:

VM -> Host Ok
VM -> Distant Host Ok

Distant Host -> VM n/a
Host -> VM n/a

Examples of connectivity test using ping:

We infer that the subnet of the VM is connected to the network of the host machine through
virtualbox which acts as a router. Since the subnet is private, it cannot be reached from
outside.

Third part: Set up the “missing” connectivity

To perform the port forwarding necessary for the symmetric operation of our VM, we must
configure a rule like suis, in virtualbox:
@host = PC address (insa) @guest = @VM port 22

We want to connect via PuTTY in ssh (listening on port 22) on the virtual machine:

10.1.5.89:800 ----> 10.0.2.15:22

5

Zennaro Thomas
Licini Valentin
5ISS - B11

Fourth part: VM duplication

With an adequate “right-click” on our VM on virtualbox, we can duplicate it with the same
parameters.

Fifth part: Docker containers provisioning

In this part, we will install docker in our previous VM already configured. We get the ubuntu
image, then we launch it. Inside we’re already root so we don’t need to use the sudo
command.

Then we retrieve the docker @IP : 172.17.0.2.

After that, we ping Google.com (which is an Internet resource) to test the connectivity with
the Internet. As we see on the screen below, it works.

Then, we ping the VM from Docker and it works too (see the screen below).

Finally, we test the connectivity from the VM to the container and it works well as follow:

6

Zennaro Thomas
Licini Valentin
5ISS - B11

The docker works in bridge so it’s on the same network as the host so ping works.

After that, we created a new instance namedr CT2 in which we install the nano editor.

After that, we created a snapshot of the container CT2.

We execute a new instance CT3 using the previous snapshot. The list of images is
presented below.

We see in the CT3 that we actually nano install. This is normal, because when taking the
snapshot of CT2 all present resources are kept, so the nano editor is also present.

7

Zennaro Thomas
Licini Valentin
5ISS - B11

Expected work for objectives 6 and 7
First part : CT creation and configuration on OpenStack

The VM is attached to a private network and its @IP is 192.168.1.12. But when using
ifconfig: we only observe an IPV6 address : fe80::f816:3eff:fe43:bc08/64.

Second part: Connectivity test

We noticed that a ping request from the VM to the computer host didn’t work. We need to
put a gateway to ensure connectivity with the public network. We decided to put all our
Virtual machines in the same private network. The gateway will connect the public network
to the private network.

Then we test the connectivity between our VM with the outside using ssh and it perfectly
works.

Third part: Snapshot, restore and resize a VM

The resize operation consists in changing the flavor of a VM, thus allowing it to upscale or
downscale according to user needs. If we resize a running VM which has a bigger
configuration (RAM, SSD…) to a smaller config, we notice that the VM crashed. On the
contrary, it works (smaller to bigger). OpenStack can allocate new ressources on static way
but also in real time i.e. when VMs are running, that can not be the case with Virtual Box.

Making a snapshot of the VM means saving all its data to make another VM exactly the
same. When we use this snapshot to create a new VM, it has all what was installed in the
previous one, and its data.

Restoring the VM from the last backup erases all new data and changes made from that
backup.

8

Zennaro Thomas
Licini Valentin
5ISS - B11

Expected work for objectives 8 and 9
OpenStack client installation

Part three: Deploy the Calculator application on OpenStack

In order to test in an only VM all the services, we need to do the steps below:

- In the CalculatorService.js file we have to modify the IP address by “localhost”.
- In the CalculatorService.js file the port has to be chosen between 50000 and 50050
- Having 4 terminal which are listening on each port associated to each sub-service

(SumService, SubService, MulService, DivService)

We create 5 VMs and each of them is going to implement one service between the 5
compute services. All of the VMs will be integrated in the same network.

For the VM which contains the calculator service, we need to put a floating IP in order to be
at the interface with the external user.

We have added a new security rule in order to open the 50005 port.

As shown on the screens below, the application is running well.

9

Zennaro Thomas
Licini Valentin
5ISS - B11

Then we used the nano editor to modify the Calculator file when it was running. After
restarting it, we observed that the change is visible : the sentence “mon gros” is added on
the terminal.

Part four: Orchestrate the application deployment

In this part we are asked to do a similar operation that previously. On the VM, after installing
docker and the required tools (particularly the nodeJs client), we make a new container
instance in which we put the 5 services. Then, we make a snapshot of this instance. We
create 4 more containers based on the previous snapshot. Then, each container is assigned
to a particular micro service. So, after launching the different services and changing the right
@IP on the CalculatorService file, we used the CalculatorService on the first container to
verify that it works. Furthermore, it also works when calling it from the VM itself.

Unfortunately, we didn’t have the time to automate the service deployment.

10

Zennaro Thomas
Licini Valentin
5ISS - B11

Expected work for objectives 10 and 11

Part two: Deployment of the target topology

We decided to continue with Ubuntu images instead of alpine-node because we could reuse
the VM created in the previous part.

The built network is as follow:

Part three: Configuration of the topology and execution of the services

We test the connectivity between the VM hosting the CalculatorService and the VM hosting
the SumService : no response. It’s normal because we have 2 private networks.
The front-end machine doesn’t know where the service machines are on the internet, so it
sends frames to the default route, as known as the internet router. We have to define, in its
route table, which getaway to take when addressing the service machine's network. We use
the following command line:
sudo route add -net 192.168.18.0/24 gw 192.168.210.1

The calculator eventually works.

11

