
IoT Middleware Report

Creation and management of applications using IoT standards and
platforms

Zennaro Thomas, 5ISS - B1

November 21, 2020

Contents
Introduction 1

1 TP1 : MQTT Protocol 1
1.1 State of the Art of the MQTT protocol . 1
1.2 Creation of an IoT device with the nodeMCU board that uses MQTT communication 1

2 TP2 : Handling of Octave and a mangOH yellow IoT solution development board 4

3 TP3 : Deployment of an architecture using the oneM2M standard 5
3.1 Deployment of the Architecture . 5
3.2 Main requests used . 6
3.3 Comparison between MQTT and oneM2M . 7
3.4 Positioning between Octave Sierra Wireless and OM2M . 7

4 TP4 : Fast application prototyping for IoT 8
4.1 Applications realized with Node-red interface . 8

4.1.1 Application n°1 . 8
4.1.2 Application n°2 . 8
4.1.3 Application n°3 . 8
4.1.4 Application n°4 . 10

4.2 Benefits of Node-red . 10
4.3 Drawbacks of Node-red . 10

Conclusion 10

5 Arduino application source code 12

Introduction
This report brings together all the practical work carried out under the IoT Middleware module. I first present the application I
developed with the Arduino software to highlight the use of the MQTT protocol. Next, I present the creation of the sensors/ac-
tuators architecture using the OM2M platform and the associated HTTP requests. Finally, I present the different high-level
applications that I was able to create with the Node-Red editor.

1 TP1 : MQTT Protocol

1.1 State of the Art of the MQTT protocol
The architecture of such IoT system is a central broker between publishers and subscribers. The broker is a common interface
for sensor devices to connect to and exchange data between them.

MQTT is based on TCP/IP protocol. As it utilizes TCP connection on the transport layer for connections between sensors we
deduce that communications are reliable because TCP requires the connection on both sides (emitter and receiver). MQTT is a
lightweight messaging protocol, designed for constrained devices and low-bandwidth, high-latency or unreliable networks. This
protocol offers a quality-of-service for data delivery.

There exist 3 versions of MQTT : 5.0, 3.1.1 and 3.1.

We can find an authentication process : the MQTT broker may require identifiers authentication (username + password) from
clients to connect for security. To ensure privacy of messages, the TCP connection may be encrypted with SSL/TLS. Additional
security can be added by an application encrypting data, but it is not integrated in MQTT protocol, in order to keep it simple and
lightweight.

Use case : Suppose you have devices that include one button, one light and luminosity sensor. You would like to create a
smart system for you house with this behavior:
• you would like to be able to switch on the light manually with the button
• the light is automatically switched on when the luminosity is under a certain value
What different topics will be necessary to get this behavior and what will the connection be in terms of publishing or subscribing?

The different topics that we can depicted are as follow:
home/luminosity
home/buttonLightState

Messages come from publishers, through the MQTT broker, to one or more subscribers using these topics.

1.2 Creation of an IoT device with the nodeMCU board that uses MQTT communication
The NodeMCU (Node MicroController Unit) is an open source software and hardware development environment. We program
it in low-level machine instructions.
NodeMCU/ESP8266 has 17 GPIO pins which can be assigned to functions such as I2C, I2S, UART, SPI, PWM, IR Remote
Control, LED Light and Button programmatically. Each GPIO pin can be configured to internal pull-up or pull-down or set to
high impedance.
We can program the ESP8266 with:

• Lua scripts with Node MCU

• C

• C++ with Arduino IDE

Application:
I developed the application’s light management behavior through MQTT exchanges as defined on the part 1.1.
The objective was to create the following two subscriptions:

• Turn off or on the LED when the user presses the button

• send a message via the broker and changed the state of the LED when the light sensor is below a certain predefined
threshold

1

The code is given below.

Figure 1: Source Code for the publishers (C++)

After establishing the connection between mosquitto_pub and the Arduino, I can launch my mosquitto_sub application to
subscribe to the 2 topics. Mosquitto will act as a mediator, so messages will be sent periodically (by default every 30 seconds).
Every time I press the push button to change the state of the LED, this is kept. A message is sent indicating the current state
of the LED (see Figure 2). A similar result is observed for the second topic (see Figure 3) indicating whether or not the room
brightness threshold has been reached. For more information, see the full source code in the Appendix.

2

Figure 2: Exchanged communication during the first subscription

Figure 3: Exchanged communication during the second subscription

3

2 TP2 : Handling of Octave and a mangOH yellow IoT solution development board

During the second lab we studied mangOH yellow board. mangOH is a family of open source hardware platforms for the IoT.
This development board includes many modules and components such as different sensors (air, brightness...), an ARM processor,
a modem to wirelessly connect its IoT application on a mobile network. It also allows us to access services associated with the
Cloud but also communication services such as sending and receiving SMS.

The map resources can be managed via the web interface provided by Octave. With this interface, you activate the resources
you want and then create an observation on the sensor in question. An observation will be able to propose resources, streams,
edge actions, or local data storage. Moreover, we specify the period for which we will connect the data and we can filter this data
(by applying buffering, filtering, throttling operations). I created an observation on the light sensor for which I only recovered
the values above a certain threshold.

The final objective was to create my own application which was intended to collect the CO2 rate in the room air and then
return a message estimating the air quality (i.e., poor, normal, optimal). I realized an edge action on the resource associated with
the CO2 sensor (see Figure 4). The transmitted information is then retrieved from the interface console (see Figure 5). Looking
at the default stream, you can see the values that are sent to the cloud (Figure 6).

Figure 4: Message received for the first subscription

Figure 5: Information of the air quality retrieved on the
console

Figure 6: Values of CO2 sent to the Cloud

4

3 TP3 : Deployment of an architecture using the oneM2M standard

3.1 Deployment of the Architecture
I created 3 AE matching to 3 sensors. Indeed, we had a Smart Meter, a luminosity sensor and a temperature sensor. For each of
them, I added 2 containers :

• a DESCRIPTOR container which which brings together all the characteristics of the sensor

• a DATA container which contains the different retrieved values

Figure 7: Resources tree on the OM2M platform

Then, I created a new AE with a request reachability attribute (rr) at true and a point of access (poa) with the url of a monitor,
so that this AE represents the monitoring application. You can visualize the whole architecture on Figure 7.
By allowing this AE to subscribe to AEs referring to previous sensors, it is possible to listen to the arrival of new sensor values
on a terminal.

Then I created a new content instance for the DATA container of the light AE, in order to test the operation of subscription.
It works well as you can see on both Figure 8 and Figure 9.

5

Figure 8: New CIN created on the OM2M platform Figure 9: Retrieve of the new light CIN by listening on the
port 1400

3.2 Main requests used
Here I show you the typical queries I have developed with Postman client to feed the resource tree and perform different opera-
tions.

Figure 10: Request for the creation of a new AE named
LuminositySensor

Figure 11: Request for the creation of a CNT named DE-
SCRIPTOR

Figure 12: Request for the creation of a new CIN for the
DESCRIPTOR container

Figure 13: Request for the creation of a new CIN for the
DATA container

6

Figure 14: Request for the creation of subscription of the
Light DATA container

Figure 15: Request for the creation of a new AE represent-
ing the Monitoring application

3.3 Comparison between MQTT and oneM2M
One difference between MQTT and oneM2M is in the resource tree structure. Indeed, for MQTT, the resource tree must be
properly designed in order to be able to adapt to any evolution of new topics that may appear in the life of the project. In
addition, when using MQTT, operation and URI information must be added to the publication content. On the contrary for
HTTP (used by oneM2M), we will define operations (GET, POST, PUT, DELETE...) that allow to characterize the nature of the
request. It is combined with a URI that determines which resource you want to send your request to. In addition, to perform a
publish/subscribe operation, simply enter the type in the request header.

Criteria MQTT oneM2M

standard coverage storage management of data exchanged be-
tween the connected things

Services as discovery, communication and
data, network, items management

deployment model One server for MQTT messages and a Pub-
lish/Subscription concept for clients

Based on 3 layers (application layer, ser-
vice layer, network layer) ; Deployed
model for things/gateways/the Cloud

data model Based on the use of topics (hierarchically) Structured data thanks to a resources tree
and a REST architecture

hardware platform and pro-
gramming language

No specific material for the client/server
management ; languages such as Lua, Java

Several open-source platforms ; languages
such as Java, Python...

security Possible communication encryption (but
heavy)

Authentication, communication encryp-
tion

Table 1: Comparison between MQTT and oneM2M using some criteria

3.4 Positioning between Octave Sierra Wireless and OM2M
Octave Sierra Wireless is a Cloud solution very simple of use with a large variety of options. The interface is very intuitive.
Creating new virtual resources does not require a HTTP REST request as is the case with the OM2M platform. In addition, Octave
is optimal for device management, evolution of services and resources, ideal for the maintainability of the Cloud architecture.
With Octave, we can see the evolution of data from resources graphically but also given by data. We can easily filter the ones we
want to store on the Cloud.
With OM2M platform, we can easily have a overview of the resources tree and the hierarchy dependencies. We need to use a
client (like Postman) to manage the resources with operation like GET, POST, PUT, DELETE...With Octave, everything is done
through the web interface.

7

4 TP4 : Fast application prototyping for IoT
The source code of each flow is given in the following file: flows_TP4_Zennaro.json.

4.1 Applications realized with Node-red interface
4.1.1 Application n°1

The objective was to retrieve get sensor values or actuator state (lamps...). I choose to get data instances of LAMP_0 and of the
TemperatureSensor that I created on TP3.

Figure 16: Flow for the first application

4.1.2 Application n°2

The objective was to perform a simple test between luminosity value and a threshold using a function node for instance.Depending
on the previous result I can either turn off or turn on both lamps.

Figure 17: Flow for the second application

4.1.3 Application n°3

The objective was to create a dashboard that plots values of the TemperatureSensor on a chart (see Figure 18). Moreover, with
a switch node I was able to change the state of LAMP_0 (see Figure 19). The result dashboard is given on Figure 20. You can
access to it by typing on the URL bar: http://localhost:1880/ui.

8

Figure 18: Flow for the third application regarding the chart

Figure 19: Flow for the third application regarding the switch

Figure 20: Dashboard

9

4.1.4 Application n°4

For the last application, I decided to write the state of LAMP_0 directly on a file each time I inject a data.

Figure 21: Flow for the fourth application

4.2 Benefits of Node-red
Node-red makes it possible to build applications intuitively and visually with its graphical interface. There are many libraries
and nodes available to us (MQTT, dashboard...). Node-red provides us with a wide range of connectors, processing components
that can be connected directly to wires via a "drag and drop" system. We can process the data directly, implement functions in
order to vary the parameters of captors or actuators (change the state of a lamp...)

Moreover, the deployment of our flows is quite practical and we can:

• deploy all flows

• specifically choose a flow that you want to deploy

• deploy only flows that have undergone changes

A debug console is also integrated which allows testing directly on the interface. Therefore, IoT applications can be easily
implemented and the OM2M platform can be used after installing the corresponding nodes in Node-red.

4.3 Drawbacks of Node-red
Node-red will however present some disadvantages. Indeed, one recovers directly in output the payload of each message but it
can for example become complicated to filter the data of such or such sensor. Moreover, in terms of security it is not optimal.
Indeed, anyone who can retrieve its IP address can access the editor and so he would be able to do changes regarding our flows.
This is only suitable if we run Node-red on a trusted network.

Conclusion
To conclude, this set of labs allowed me to put into practice the knowledge developed through the MOOC on the oneM2M
standard and the OM2M platform. Moreover, the first lab allowed the publication/subscription mechanism to be manipulated
through MQTT and the mosquitto broker. Then, with Node-Red, we can develop applications faster with an intuitive way. So all
these tools are practical in order to realize high-level applications to interact with sensors and actuators and can therefore be the
basis of the creation of IoT solutions.

10

List of Figures
1 Source Code for the publishers (C++) . 2
2 Exchanged communication during the first subscription . 3
3 Exchanged communication during the second subscription . 3
4 Message received for the first subscription . 4
5 Information of the air quality retrieved on the console . 4
6 Values of CO2 sent to the Cloud . 4
7 Resources tree on the OM2M platform . 5
8 New CIN created on the OM2M platform . 6
9 Retrieve of the new light CIN by listening on the port 1400 . 6
10 Request for the creation of a new AE named LuminositySensor . 6
11 Request for the creation of a CNT named DESCRIPTOR . 6
12 Request for the creation of a new CIN for the DESCRIPTOR container . 6
13 Request for the creation of a new CIN for the DATA container . 6
14 Request for the creation of subscription of the Light DATA container . 7
15 Request for the creation of a new AE representing the Monitoring application 7
16 Flow for the first application . 8
17 Flow for the second application . 8
18 Flow for the third application regarding the chart . 9
19 Flow for the third application regarding the switch . 9
20 Dashboard . 9
21 Flow for the fourth application . 10

5 Arduino application source code

1 #include <Arduino.h>
2 #include <ESP8266WiFi.h>
3

4 // Enable MqttClient logs
5 #define MQTT_LOG_ENABLED 1
6 // Include library
7 #include <MqttClient.h>
8

9

10 #define LOG_PRINTFLN(fmt, ...) logfln(fmt, ##__VA_ARGS__)
11 #define LOG_SIZE_MAX 128
12 void logfln(const char *fmt, ...) {
13 char buf[LOG_SIZE_MAX];
14 va_list ap;
15 va_start(ap, fmt);
16 vsnprintf(buf, LOG_SIZE_MAX, fmt, ap);
17 va_end(ap);
18 Serial.println(buf);
19 }
20

21 #define HW_UART_SPEED 115200L
22 #define MQTT_ID "TEST-ID"
23 #define SENSOR_LIGHT_PIN
24 #define BUTTON_PIN
25 #define LED_PIN
26 #define LUM_THRESHOLD 300
27

28 static MqttClient *mqtt = NULL;
29 static WiFiClient network;
30 const char* MQTT_TOPIC_SUB = "test"/MQTT_ID/"sub";
31 const char* MQTT_TOPIC_PUB_L = "luminosity";
32 const char* MQTT_TOPIC_PUB_B = "StateLightButton";
33

34 // ============== Object to supply system functions ============================
35 class System: public MqttClient::System {
36 public:
37

38 unsigned long millis() const {
39 return ::millis();
40 }
41

42 void yield(void) {
43 ::yield();
44 }
45 };
46

47 // ============== Setup all objects ==
48 void setup() {
49 // Setup hardware serial for logging
50 Serial.begin(HW_UART_SPEED);
51 while (!Serial);
52

53 // Setup WiFi network
54 WiFi.mode(WIFI_STA);
55 WiFi.hostname("ESP_" MQTT_ID);
56 WiFi.begin("Cisco38658");

12

57 LOG_PRINTFLN("\n");
58 LOG_PRINTFLN("Connecting to WiFi");
59 while (WiFi.status() != WL_CONNECTED) {
60 delay(500);
61 LOG_PRINTFLN(".");
62 }
63 LOG_PRINTFLN("Connected to WiFi");
64 LOG_PRINTFLN("IP: %s", WiFi.localIP().toString().c_str());
65

66 // Setup MqttClient
67 MqttClient::System *mqttSystem = new System;
68 MqttClient::Logger *mqttLogger = new MqttClient::LoggerImpl<HardwareSerial>(Serial)

;
69 MqttClient::Network * mqttNetwork = new MqttClient::NetworkClientImpl<WiFiClient>(

network, *mqttSystem);
70 //// Make 128 bytes send buffer
71 MqttClient::Buffer *mqttSendBuffer = new MqttClient::ArrayBuffer<128>();
72 //// Make 128 bytes receive buffer
73 MqttClient::Buffer *mqttRecvBuffer = new MqttClient::ArrayBuffer<128>();
74 //// Allow up to 2 subscriptions simultaneously
75 MqttClient::MessageHandlers *mqttMessageHandlers = new MqttClient::

MessageHandlersImpl<2>();
76 //// Configure client options
77 MqttClient::Options mqttOptions;
78 ////// Set command timeout to 10 seconds
79 mqttOptions.commandTimeoutMs = 10000;
80 //// Make client object
81 mqtt = new MqttClient(
82 mqttOptions, *mqttLogger, *mqttSystem, *mqttNetwork, *mqttSendBuffer,
83 *mqttRecvBuffer, *mqttMessageHandlers
84);
85

86 pinMode(LIGHT_SENSOR_PIN, INPUT);
87 pinMode(BUTTON_PIN, INPUT);
88 pinMode(LED_PIN, OUTPUT);
89

90

91 }
92

93 // ============== Subscription callback ==
94 void processMessage(MqttClient::MessageData& md) {
95 const MqttClient::Message& msg = md.message;
96 char payload[msg.payloadLen + 1];
97 memcpy(payload, msg.payload, msg.payloadLen);
98 payload[msg.payloadLen] = ’\0’;
99 LOG_PRINTFLN(

100 "Message arrived: qos %d, retained %d, dup %d, packetid %d, payload:[%s]",
101 msg.qos, msg.retained, msg.dup, msg.id, payload
102);
103 }
104 // ============== Main loop ==
105 void loop() {
106 // Check connection status
107 if (!mqtt->isConnected()) {
108 // Close connection if exists
109 network.stop();
110 // Re-establish TCP connection with MQTT broker
111 LOG_PRINTFLN("Connecting");

13

112 network.connect("192.168.1.131", 1883);
113 if (!network.connected()) {
114 LOG_PRINTFLN("Can’t establish the TCP connection");
115 delay(5000);
116 ESP.reset();
117 }
118 // Start new MQTT connection
119 MqttClient::ConnectResult connectResult;
120 // Connect
121 {
122 MQTTPacket_connectData options = MQTTPacket_connectData_initializer;
123 options.MQTTVersion = 4;
124 options.clientID.cstring = (char*)MQTT_ID;
125 options.cleansession = true;
126 options.keepAliveInterval = 15; // 15 seconds
127 MqttClient::Error::type rc = mqtt->connect(options, connectResult);
128 if (rc != MqttClient::Error::SUCCESS) {
129 LOG_PRINTFLN("Connection error: %i", rc);
130 return;
131 }
132 }
133 {
134 // Add subscribe here if required
135 MqttClient::Error::type rc = mqtt->subscribe(
136 MQTT_TOPIC_SUB, MqttClient::QOS0, processMessage
137);
138 if (rc != MqttClient::Error::SUCCESS) {
139 LOG_PRINTFLN("Subscribe error: %i", rc);
140 LOG_PRINTFLN("Drop connection");
141 mqtt->disconnect();
142 return;
143 }
144 }
145 } else {
146 {
147 // Add publish here if required
148 const char* buf_state_on = "LIGHT ON";
149 const char* buf_state_off = "LIGHT OFF";
150 MqttClient::Message message;
151

152 message.qos = MqttClient::QOS0;
153 message.retained = false;
154 message.dup = false;
155

156 if(digitalRead(BUTTON_PIN)){
157 message.payload = (void*) buf_state_on;
158 message.payloadLen = strlen(buf_state_on);
159 mqtt->publish(MQTT_TOPIC_PUB_B, buf_state_on);
160 }
161 else{
162 message.payload = (void*) buf_state_off;
163 message.payloadLen = strlen(buf_state_off);
164 mqtt->publish(MQTT_TOPIC_PUB_B, buf_state_off);
165 }
166

167 int getLuminosity = analogRead(LIGHT_SENSOR_PIN);
168 const char* buff_lum = "LUM_REACHED";
169

14

170 if(getLuminosity >= LIGHT_THRESHOLD){
171 message.payload = (void*) buff_lum;
172 message.payloadLen = strlen(buff_lum);
173 mqtt->publish(MQTT_TOPIC_PUB_L, buff_lum);
174 }
175

176 }
177 // Idle for 30 seconds
178 mqtt->yield(30000L);
179 }
180 }

15

	Introduction
	TP1 : MQTT Protocol
	State of the Art of the MQTT protocol
	Creation of an IoT device with the nodeMCU board that uses MQTT communication

	TP2 : Handling of Octave and a mangOH yellow IoT solution development board
	TP3 : Deployment of an architecture using the oneM2M standard
	Deployment of the Architecture
	Main requests used
	Comparison between MQTT and oneM2M
	Positioning between Octave Sierra Wireless and OM2M

	TP4 : Fast application prototyping for IoT
	Applications realized with Node-red interface
	Application n°1
	Application n°2
	Application n°3
	Application n°4

	Benefits of Node-red
	Drawbacks of Node-red

	Conclusion
	Arduino application source code

