Semantic Web of Things laboratory Report

Xu Andy, Zennaro Thomas, ISS-Groupe B1, Bindome 3
December &, 2020

Contents
Introduction

1 Designing an ontology and using the reasoner in Protégé
1.1 Light Ontology e
L.1I.1 Conception e e e e
1.1.2 Populating e e
1.2 Heavy ontology o . i e e e e e e
12,1 Conception o v v i e e e e e e e e
1.2.2 Populating e e e e

2 Ontology manipulation and dataset annotation using Java
2.1 Interface implementation L e
2.2 Exploitationin Protégé L e

Conclusion
Appendix

A Java Code
Al Model e
A2 Controller e e

Introduction

The aim of both labs is to manipulate the notion of ontology, to discover the main aspects associated with it, and to be
able to use a reasoner to observe the steps of deduction when developing our ontology on a weather example. The idea is
to develop a small smart application of meteorology. The work consists of two main steps:

1. afirst session on designing a weather ontology with the Protégé software in which the Hermit grape grower is used.

2. a second session on converting data from a given dataset in CSV format into 5-star interpretable data, using our
weather ontology.

1 Designing an ontology and using the reasoner in Protégé

1.1 Light Ontology
1.1.1 Conception

First of all, we expressed the given knowledge by creating the most relevant classes and sub-classes. We defined five
classes to meteorology as Phenomenom, MeasurableParameters, Instants, Observations and Lieu. Furthermore, we added
two sub-classes for Phenomenom (GoodWeather and BadWeather) and three sub-classes for Lieu (Continent, Pays and
Ville). You can see the hierarchy of the classes in Figure 1.

Then, we need to define the links between classes and sub classes. For that, it is necessary to add properties and sub
properties included in the owl:topObjectProperty. These object properties will allow the relationships between individuals.
For example, for the assertion "un phénomene a pour symptome une observation", we defined "a pour symptome’ as a
property, 'phénomeéne’ as a domain and ’observation as a range. All the object properties can be seen in Figure 2.
Moreover the example is given in Figure 3.

We can add other characteristics for one property. For instance, if we take the ’includes’ property we can say that it is
the inverse of ’is included in’. Indeed, it means that if an individual present the ’includes’ property, the ’is included in’
property cannot be true because at the semantic level, they can only be opposed.

We used the data properties to attribute types of data to our ontology. They are essential when we need to put in relation
an instance of a class with a data value. The data properties for our ontology are shown in Figure 4. With that we can
define relations such as the assertion n°4: "Un instant a un timestamp". To create this data property, we have to attribute
’instants’ as a domain and ’xsd:dateTimeStamp’ as a range.

Asserted v

v [Object property hierarchy: owl:topObjectPro & Hm &
Instants +
v Liu T =<} Asserted -
Continent A& JowitopObjectProperty
Pays = 2 pour date
ville = a pour localisation
MeasurableParameters = a pour symptome
Observations = ends
¥ @ Phenomenom v includes
v BadWeather = a pour capitale
Fog = is included in
Rain = is specified by
v @ GoodWeather = measures
Sunny - starts

Phénoméne court
Phénoméne long
Rain

Figure 2: Properties and sub-properties of the ontology

Figure 1: Classes and sub-classes of the ontology

Description: a pour symptéme ENEmE

Equivalert To

SubProperty Of

Data property hierarchy: [0

Asserted

v owitopDataProperty
- 3 une durée
- imestamp
o value

Observations

Figure 4: Data properties of the ontology

Figure 3: Example for the ’a pour symptome’ property
description

1.1.2 Populating

The next step is to create individuals based on our classes in order to populate our ontology. You can found the individuals
in Figure 5.

After the creation of the individuals, we could start the Hermit reasoner to deduce information from our current ontology.
For instance, if we take the assertion n°4 Toulouse est située en France”, the reasoner succeed to deduce that Toulouse
and France are individuals which belong to the Lieu class and used the ’is included in’ property. Moreover, Hermit
deduced that France contains Toulouse by using the ’includes’ property (i.e. the inverse property of ’is included in’ .If
we take a second example, for the assertion n°6 ”La France a pour capitale Paris”, the reasoner concludes that France
“includes’ and ’a pour capitale’ Paris, that Paris ’is included in’ France, that France is a ’Pays’ and that Paris is a ’Ville’
(see Figure 6 and Figure 7).

Individuals: M m =
g
& a1
. Europe Description: France][= m X § Property assertions: France 015 mE
@ force du vent
. France Types Ohject property assertions
& hygrométrie Pays 'a pour capitale’ Paris
L i =i included in* Europe
& Laville Lumigre Same Individual As '3 pour capitale’ 'La Ville
L 3l Lumigre'
@ Paris mmincludes Toulouse
. Different Individuals
@ piuviomtrie . mmincludes 'La Ville Lumigre’
4 pression atmosphérique
@ Singapour m=includes Paris
& singapour
@ température
& Toulouse
@ vtesse davent Figure 6: Description of the individual France

Figure 5: Individuals for our ontology

Description: Paris EI=MmE j Property assertions: Paris =0

Types bject property assertions
Ville W='is included in” Europe

i included i’ France

Figure 7: Description of the individual Paris

1.2 Heavy ontology
1.2.1 Conception

After creating the light ontology, we can conceive the heavy ontology. To illustrate it, you can found the explanation
of examples. We need to set up several relations and attributes. For the knowledge from 1 to 4, we need to create the
sub-classes "Phenomenon court" and "Phenomenon long" (see Figure 8). Indeed, for them, we need to characterize these
classes by using the Manchester syntax. Indeed for the "Phenomenon court" sub-class, we have: "Phenomenom and
’a une durée’ some xsd:integer[< 15]. It means that a short phenomenon is equivalent to a phenomenon lasting less
than 15 min. The ’a une durée’ property is not followed by an object but by a data value. There is the same case for the
"Phenomenon long".

For the knowledge n°5, we establish the inverse property, i.e if A is included in B, A cannot include B.

For the knowledge n°6, we establish the transitivity characteristic, i.e if A is included in B, and B is included in C,
therefore A is included in C. For instance, a city is included in a country which is part of a continent (see Figure 9), so a
city is included in a continent.

For the knowledge n°8, we establish the sub property notion : if a city is defined as a capital, this city is necessarily part of
the country. So, when we affirm that Paris is the capital of France, it is obvious that Paris is part of France (see Figure 10).
For the knowledge n°9, we can say that rain is equivalent to a phenomenon that shows an observation, measured by a rain
gauge, and that the observation value is greater than 0 . The Manchester syntax is given as follows : "Phenomenon and
(’a pour symptome’ some (Observation and (measures value pluviométrie) and (value some xsd:float[> 0.0f])))" To
express that, we created the "a pour symptome" object property.

Description: Phénoméne court

Equivalert To Characteristics: includes 2]01=m & j| Description: includes
@ Phenomenom Functional Equivalert To
and ('a une durée’ some xsd:integer{< 15])

Inverse functional

P SubProperty Of
SupClass Of v Transitive
@ Phenomenom
Symmetric Inverse Of
General class axioms Asymmetric F=is included in’
Reflexive Domains (intersection)
SubClass Of (Anonymous Ancestor)
Ireflexive O Lieu
Instances
Ranges (intersection)
Target for Key ®Lie
Disjoint With 5-
© hénoméne ong Figure 9: Inverse and transitivity properties for ’in-

cludes’
Figure 8: Short phenomenon

Description: a pour capitale

Equivelent To

SubProperty Of

mmincludes
Inverse Of

Domaine (inter section)
@ Pays

Ranges (intersection)
@ ville

Figure 10: ’a pour capitale’ property

1.2.2 Populating

We created some individuals in order to populate our ontology. These individuals can get some specifications. We create
both "Paris" and "La ville lumiere" as instances. We assign that "France" "a pour capitale" (object property) "Paris"
(see Figure 11). When we used the reasoner we can see that it put both instances to the same category ("same individual
as"). It is normal because we specified that a capital is unique. Then if we create two individuals with the same name
(Singapour as a country and Singapour as the capital), the reasoner manages to distinguish between the two Singapore
and affects the good properties and links between both instances (see Figure 12 and Figure 13).

Description: La Ville Lumiére 10 = m x| § Property assertions: La Ville Lumiére
Types

Ohject property assertions
@ ville

iz included in' Europe

BW'is included in’ France

Same Individual As

& raris

Data property assertions

Figure 11: Example with Paris and La ville lumiere

Description: Singapour 1= =] § Property assertions: Singapour
Types

@ ville

Object property assertions

s included in' Singapour

Figure 12: Example with Singapour (ville)

Description” Singapour

1= X § Property assertions: Singapour

Types Ohject property assertions
) Pays B3 pour capitale’ Singapour
Mincludes Singapour
Sama Indiviel ial Ae

Figure 13: Example with Singapour (Pays)

2 Ontology manipulation and dataset annotation using Java

2.1 Interface implementation

We start by implementing the interfaces to convert raw CSV data to manipulable data. This is done by completing the
provided Java code that gives us the baseline of our project through the Apache Jena and SPARQL wrapers.

First is to implement the functions that provide knowledge-base related operations in the DoltYourselfModel class, which
are quickly described in the IModelFunctions class. These functions are used to populate the designed ontology that serves
as the database structure for our APIL. They create the corresponding instances, that is individuals, for the designed entities,
such as classes or properties. For this lab, we only implement some functions that instantiates mostly the Observation
class and the Timestamp property (see Appendix: Model). This code is thereafter validated using the provided instantiating
tests which makes sure that our implementation corresponds to the designed ontology.

What can be noticed is that the API distinguishes labels and URI like Protégé. What is manipulated to construct our
database are therefore all URI that come from the ontology. Labels serve only to provide the human user a readable name
and to facilitate URI manipulation thanks to the getEntityURI or getlnstancesURI functions. So every link that our API
creates, adding the Timestamp property to one instance for example, when instantiating the database is done through the
URL

Next we implement the IControlFunctions class that uses functions from the DoltYourselfModel class to enrich the dataset
by instantiating the Observation class (see Appendix: Controller). We test our API using the provided JSON parser to
convert the raw CSV data to observations instances, and export our newly populated ontology to exploit it in Protégé.
(Here we only use the given data with 300+ observations at path "src/test/temperature.txt" instead of the complete one
that was too big and did not compute after one hour of waiting). Also, if we modify the path of the ontology to be loaded
from the provided one, which we implemented correspondingly, to the one we created in the first lab, the program fails
according to the discrepancies found between them in our case.

2.2 Exploitation in Protégé

We import the generated model in Protégé and confirm that the instances created by the API are correctly done as can
be seen in Figure 14 and Figure 15. Each value is an instance of WeatherObservation and corresponds to one specific
timestamp. It is also linked to a OQuzput_T that is associated with/produced by one specific sensor, such as we implemented
in the code.

Data propettiss Annotation propries Datatypes Individuals = @ 2014-02-17T22:50:00 — hitp-/itp Siss #-5439157171098149627
Classss Objsct propsities Annotations | Usags

Individuals: 2014-02-17T22:50:00 5 W = B Usage: 2014-02-17722:50:00
|
¥ X Show: ¥ this'« different
W LUTA-ULA (1 LEU Found 7 uses of 2014-02-17T22:50:00
@ 2014-02-17T22:20:00 v $10
@ 103 pour date@r 2014-02-17T2250:00
@ 2014-02-17723:00:00
@ 2014.02.17T23:20:00 ¥ @ 2014.0217T2250:00
& 2014-02-177125:50:00 @ 2014-02-17T22:50:00 "has timestamp@en' “2014-02-17T22:50:00°
@30 o EE2014-02-17T22:50:00 rdfs Tabel “2014-02-17T22:50:00"
&30 @ 2014-02-17T22:50:00 Type Instani@en’
&30
® 30
&30 Description: 2014-02-17722:50:00 FIMBM® & | Property assertions: 2014-02-17T722:50:00
® 30 B
&0 ypes
@30 ‘Instant@en’
&30 Data proper
@30 Same Individual As has p@en’ "2014-02-17T2250:00"
&30
. . .. 5 . 5
Figure 14: Individual "has timestamp’ property
Data prapenies Annatation properties Datatypes Individuals = @ 3.0 — http:/itp 5iss fr#-2096354936959019639
Classes Object properties Annotations | Usage
individuals: 3.0 BECE
L] Show: v this v/ diflerent
W 2180211 ZEu Found 0 uses of 3.0
@ 2014.0217T22:20:00 V930

& 2014-02-17T22:50:00 W30 rdfslabel 3.0

.3 0°a pour date@fr' 2014-02-17T04:50:00
.3 0°has value@en’ "3.0"
@ 3.0 Type WeatherObservation@en’

@ 2014-0217723:00:00
@ 2014-0217T23:20:00
@ 2014-0217723:50:00
®30

® 30 V- @ output T2@en

30 i @output T2@en"has value 30

&30

o
. 3.0 Types Object property assertions

&30 ‘WeatherObservation@en’ "2 pour date@fr* 2014-02-17T04:50:00

® 30

30 Same Individual As Data property assertions

&30 m='has value@en’ "3.0"
&30 @

Figure 15: Individual "has value’ property

We then check if the sensors have been chosen wisely as described in the W3C SSN (see Figure 16).

Data Skelaton
— ~ —
hasValue fo’nle_ N SensorOutput .- - ; . _‘A: =~ “sensingMethodUsed only
y ,* detects only K T)
. \ £y o, .
i rinput p===---===c-----__ ¢ ~
ObservationValue v, | Sensorlnput eProxyFor oriy [~
Meal i L) i Property
~ . , an=" -
. L e* ST P isPropertyOf some
R, on|;-‘: includesEvent some Lo :;'—"rabservede only:,f :
: observedBy only ,«*=z5% -~ y 1hasProperty only, some
" gp¥=c
abalelll- L 4» FeatureOfinterest H
L4 1
r . v ciifalsinisimisini e
MeasuringCapability ' i ConstraftBlock
hasMeasurementCapability only " forProperty onlyl e
=T Condition only inCondition only
[MeasurementCapability]- hilabibh & bbb bbb >| Condition |< ------------------
H
L

Figure 16: SSN chart as described in the W3C

With what we observed and on Figure 17 and Figure 18, the sensors ontology corresponds to the W3C SSN description.

Description: Sensor

Equivalernt To

SubClass Of
@ has measurement capability only Measurement Capability’
@ detects only Stimulus
@) implements some Sensing
) obsenves only Property
@ PhysicalObject

Figure 17: Sensor

Description: Sensor Qutput

SubClass Of
@ 'has value’ some ‘Observation Value'
s produced by some Sensor
@ InformationObject

General class axioms
SubClass Of {Anonymous Ancestor)
Instances

& Output T2@en

& Output T1@en"
& Output T3@en"

Figure 18: Sensor Output

Finally, object property is a property that link two class instances between them whereas data property links one class
instance to one datatype, which is a data that that instance provides.

Conclusion

In this lab we manipulated an ontology through an example about meteorology and learned about translating dataset
structure to its corresponding ontology, the usage and properties of a reasoner that is a inference engine, and finally about
automated ontology instantiation by Java API.

Appendix

A Java Code
A.1 Model

package semantic.model;
import java.util.List;

public class DoItYourselfModel implements IModelFunctions

{

IConveniencelInterface model;

public DoItYourselfModel (IConvenienceInterface m) {
this.model = m;

@QOverride
public String createPlace (String name) {
return this.model.createInstance (name, this.model.getEntityURI ("Lieu") .get (0));

@Override
public String createlnstant (TimestampEntity instant) {
List<String> myList =
this.model.getInstancesURI (this.model.getEntityURI ("Instant").get (0));
for (String s : myList) {
if (this.model.hasDataPropertyValue (s, this.model.getEntityURI ("a pour
timestamp") .get (0), instant.getTimeStamp())) {
return null;

}

String newInstant = this.model.createInstance (instant.getTimeStamp (),
this.model.getEntityURI ("Instant") .get (0));

this.model.addDataPropertyToIndividual (newInstant, this.model.getEntityURI ("a pour
timestamp") .get (0), instant.getTimeStamp());

return newlInstant;

@Override
public String getInstantURI (TimestampEntity instant) {
List<String> myList =
this.model.getInstancesURI (this.model.getEntityURI ("Instant") .get (0));
for (String s : myList) {
if (this.model.hasDataPropertyValue (s, this.model.getEntityURI ("a pour
timestamp") .get (0), instant.getTimeStamp())) {
return s;

}

return null;

@Override
public String getInstantTimestamp (String instantURI)
{
List<List<String>> myDoublelList = this.model.listProperties (instantURI);
for (List<String> 1ls : myDoublelList) {
if (ls.get(0) == this.model.getEntityURI ("a pour timestamp") .get (0)) {
return ls.get(1l);

}

return null;

@Override
public String createObs (String value, String paramURI, String instantURI) {

String newlInstant = this.model.createlnstance (value,
this.model.getEntityURI ("Observation") .get (0));
this.model.addDataPropertyToIndividual (newInstant, this.model.getEntityURI ("a pour
valeur") .get (0), value);
String timestamp = this.getInstantTimestamp (instantURI) ;
this.model.addObjectPropertyToIndividual (newInstant, this.model.getEntityURI ("a
pour date").get (0), instantURI);
String sensorURI = this.model.whichSensorDidIt (timestamp, paramURI) ;
this.model.addObservationToSensor (newInstant, sensorURI);
return newlInstant;

A.2 Controller

package semantic.controler;

import

import
import
import

public
{
pri
pri

pub
{

Qov
pub

java.util.List;
semantic.model.IConveniencelInterface;
semantic.model.IModelFunctions;
semantic.model.ObservationEntity;

class DoItYourselfControl implements IControlFunctions

vate IConveniencelInterface model;
vate IModelFunctions customModel;

lic DoItYourselfControl (IConvenienceInterface model, IModelFunctions customModel)

this.model = model;

this.customModel = customModel;
erride
lic void instantiateObservations (List<ObservationEntity> obsList,String paramURI)

for (ObservationEntity obsv : obsList) {
this.customModel.createObs (obsv.getValue () .toString(), paramURI,
this.customModel.createlInstant (obsv.getTimestamp()));

{

List of Figures

1 Classes and sub-classes of theontology
2 Properties and sub-properties of the ontology
3 Example for the ’a pour symptome’ property description oo
4 Data properties of the ontology L.
5 Individuals for our ontology L
6 Description of the individual France o
7 Description of the individual Paris
8 Short phenomenon L e e e e e e
9 Inverse and transitivity properties for includes’ oL Lo
10 ’apourcapitale’ property L. e e e e
11 Example with Paris and La ville lumiere
12 Example with Singapour (ville)
13 Example with Singapour (Pays)
14 Individual ’has timestamp’ Property o v v v vt i e e e e e e e e e e
15 Individual *has value’ property
16 SSNchartasdescribedinthe W3C
17 Sensoro e
18 Sensor Output L e e e e e e e e e

N R R LLWWWWWERNNRF— — — —

	Introduction
	Designing an ontology and using the reasoner in Protégé
	Light Ontology
	Conception
	Populating

	Heavy ontology
	Conception
	Populating

	Ontology manipulation and dataset annotation using Java
	Interface implementation
	Exploitation in Protégé

	Conclusion
	Appendix
	Java Code
	Model
	Controller

