
GEI Department

Innovation Project

Wireless IO Tools

Authors:
Louis Chauvet
Alexandre Cros
Michael Ejigu
Luan Truong
Andy Xu
Thomas Zennaro

Mentors:
Olivier Boizot

François Malou
Stéphane Motta

January 18, 2021

Contents

I. Introduction 2
1. Context . 2
2. Specifications . 3
3. Timeline . 3
4. Financial aspects . 4

II. Conception 5
1. Hardware Conception . 5

1.1. General overview of the complete hardware system 5
1.2. XBee module features . 6
1.3. Electrical diagram of the XBee module, adapter and USB link package . 7

2. Software Conception . 9
2.1. Use case diagram for the Gateway . 9
2.2. Interaction diagram for the Gateway system 10
2.3. Class diagram of the Gateway system . 11
2.4. Database for command translation . 13

III. Development 15
1. Qt Framework . 15
2. Radio_Packet class . 15
3. XBee_Controller class . 16
4. Radio_Packet and XBee_Controller tests . 17
5. ESAO_Packet class . 17
6. IDMK3_Controller class . 19
7. ESAO_Packet and IDMK3_Controller tests . 20
8. Gateway class . 20
9. Integration tests . 20

9.1. Material used to conduct tests . 21
9.2. First test . 21
9.3. Second test . 22
9.4. Third test . 23
9.5. Tests conclusion . 23

IV. Conclusion 24

1

CHAPTER I. INTRODUCTION

I
Introduction

This project is realized in the context of the Internet of Things project, in the fifth year
of Innovative Smart Systems major at the National Institute of Applied Sciences of Toulouse
(INSA). Our team is comprised of six engineering students, three Computer Science and Net-
work engineering students and three Electronics and Automation students. The Smart Cabin
project was chosen among a list of available projects for its industrial relevancy and the oppor-
tunity to work in cooperation with STERELA and Airbus.

1. Context
Our client is STERELA, an Airbus subcontractor. They are working on a proof of concept

to demonstrate to Airbus the feasibility of a project in order to obtain funds from Airbus to
advance to the production stage.

Airbus currently tests each plane on the ground before their initial flight. To do this, they
need to connect different wires from a computer to different sensors. This way, the computer
can send simulated data in order to retrieve sensor responses which allow to check the plane
subsystems function correctly. The issue is that a cabin can be 70m long and the tests can have
thousands of different configurations which require immense cable lengths, workforce and time
to set up. The purpose of this project is to implement a wireless interface (gateway) between
the plane and the computer (called the ESAO workstation, acronym for "Essais au Sol Assistés
par Ordinateur") to manage tests for them to communicate. The gateway has to detect the
plane’s configuration, send test signals to the plane through a radio module and receive the
returned values. In addition to this "translation work", the gateway must be an autonomous
system in order to limit the time operators have to spend on it - for instance, it needs to update
automatically.

STERELA is implementing an automated testing tool for Airbus which is comprised of two
parts: a test box located on the plane which implements the tests, and a gateway to mediate
wireless communication between the test box and a workstation. Making this communication
wireless has many advantages such as making the testing easier, cheaper and faster as no cables
are needed.

Innovation Project 2

CHAPTER I. INTRODUCTION

2. Specifications
The objective is to conceive and implement a gateway machine (PC or micro computer such as
a Raspberry Pi) that serves the following functions:

• Communicate with the test box through a radio module (XBee)

• Communicate with the ESAO workstation through the IDMK3 protocol (Airbus Ethernet
protocol based on UDP)

• Translate the orders from the ESAO workstation to the the test box, and vice versa (data
received from the test box to the workstation).

• Capable of automatically updating

• Manage the timeouts (if a command fails to send, our machine has to send it again)

3. Timeline
To establish a first temporal organization we wrote a Gantt diagram (Figure I.1).

Figure I.1: Gantt diagram of the project

The first step was the signature of the agreement. Because of the pandemic this took longer
than expected. Following signature the client was able to send us all the useful documents to
start working on the project. From that moment we divided our work into sub-teams in order to
analyze and extract information from those documents. Next we started the conception part and
did different reviews and validations with the client. Then we began the development on virtual
machines set up specifically to give every team member the same development environment
despite the distance.

As this Gantt diagram was an estimation we sometimes had to delay some milestones.

Innovation Project 3

CHAPTER I. INTRODUCTION

4. Financial aspects
As we are creating a proof of concept, the goal is not to have a very detailed version of the

system. The architecture and scalability of our project is much more important to the client
than the specific treatment of every single possible command. We are working on a simplified
system that uses few commands and only one end-point for each side. The process does not
require much power and our only requirements is for our machine to be able to interact with
the radio module and the ESAO. Therefore only a USB and a Ethernet port are needed so that
costs will be reduced.

Firstly this report will present all the project conception we developed around the hardware
and the software. The second part present all the software specifications.

Innovation Project 4

CHAPTER II. CONCEPTION

II
Conception

1. Hardware Conception
In this part we present the hardware conception we realized considering all the specifications

and the clients requests.
There are several requirements on the hardware conception. The gateway has to communicate
with an IP Ethernet network on one side and the XBee protocol on the other side. IP Ethernet
is imposed by the existing test system which uses this protocol to work. The XBee protocol has
been suggested by the client as tests are performed inside warehouses where there are different
negative environmental effects for waves such as metal, posts and planes. XBee appeared as
the best solution.

1.1. General overview of the complete hardware system

The diagram below (II.1) summarises all the components we use for the hardware of the
interface between the gateway, the aircraft (XBee Module) and the ESAO (Ethernet). The
gateway is composed of an XBee module (XB24CDMWIT-001) which needs an adapter (WRL-
11812) to interact through the USB port with a machine that will run the code and communicate
with the ESAO through Ethernet. All the communication protocols have been defined by the
client, STERELA.

Innovation Project 5

CHAPTER II. CONCEPTION

Figure II.1: Hardware scheme of our Gateway

1.2. XBee module features

The Digi S2C DigiMesh 2.4 module (II.2) was recommended by the client. It is able to
support an XBee mesh network architecture in case STERELA wants to connect several test
boxes to one module.

Figure II.2: XBee S2C DigiMesh 2.4

The XBee module needs an adapter to be connected to a machine using a USB connection.
STERELA suggested us the SparkFun XBee Explorer USB adapter (II.3). It is possible to
directly plug the module into this adapter in order to communicate by serial link with the
XBee module (II.4).

Innovation Project 6

CHAPTER II. CONCEPTION

Figure II.3: SparkFun XBee Explorer USB

Figure II.4: USB link of the XBee module

1.3. Electrical diagram of the XBee module, adapter and USB link
package

Figure II.5 represents the complete electrical diagram including the adapter, the module
and the USB pins.

Innovation Project 7

CHAPTER II. CONCEPTION

Figure II.5: Complete electrical diagram of the XBee adapter proposed by the constructor

We decided to simplify the schematic II.5 on our own and reduce it to only what we needed
in order to have a clear documentation for the client. Figure II.6 represents all pins used to
connect the XBee module to its adapter card and to the Gateway USB port. There is a USB
connection between the Gateway and the adapter and a serial connection between the adapter
and the XBee module.

Innovation Project 8

CHAPTER II. CONCEPTION

Figure II.6: Simplified electrical diagram of the XBee module, adapter and USB link package

2. Software Conception
This part illustrates all the conception work we have done for the software. Unlike the

hardware part, we were free to design the software as we thought best.
We decided to use object-oriented conception. Oriented-object conception consists of defining
interactions between software layers called "objects". Each object corresponds to a physical
entity. The objective is to define objects’ structures, behaviours and interactions.
We found two main advantages to using this method. First, we wanted to develop the software
around the Agile method. As we are a team of six people, we agreed that it would be more
efficient. Moreover as we are developing a proof of concept, we also took the scalability of our
prototype into account, and this method was the most suitable for potential evolutions.

2.1. Use case diagram for the Gateway

The diagram below shows the different communication possibilities between each hardware
element of the test station. The principal element is the ESAO workstation. It can send
commands through the gateway which responds with either a message or an error. The gateway
also provides a service to the test box element. If the gateway receives a command the test box
is able to retrieve it and provide an answer. The third user (actor) is the gateway administrator
who needs to access the system logs and update the database for parsing.

Innovation Project 9

CHAPTER II. CONCEPTION

Figure II.7: Use case diagram

2.2. Interaction diagram for the Gateway system

The following figure shows the sequence of interactions between the test box and the ESAO
through a software control entity of the gateway. First we have the reception step of an ESAO
instruction and emission to the test box. We then have the reception of a response frame from
the test box and emission to the ESAO.

Innovation Project 10

CHAPTER II. CONCEPTION

Figure II.8: Interactions diagram for the Gateway with the ESAO and the test box

The Gateway retrieves a packet in the IDMK3_controller’s buffer with the getNext()
method. The IDMK3_controller returns an ESAO_packet. The Gateway translates the
ESAO packet into a Radio_module_packet thanks to the parse() method. The Gateway
sends the packet to the XBee_controller with the sendPacket() method which returns
"false" if an error occurs.

The Gateway retrieves a packet in the XBee_controller’s buffer with the getNext()
method. The XBee_controller returns a Radio_module_packet. The Gateway trans-
lates the XBee packet into an ESAO_packet thanks to the parse() method. The Gateway
sends the packet to the IDMK3_controller with the sendPacket() method which returns
"false" if an error occurs.

2.3. Class diagram of the Gateway system

The following figure shows all the classes of the gateway software application that are
implemented, with any dependencies between them and their interactions.

Innovation Project 11

CHAPTER II. CONCEPTION

Figure II.9: Class diagram for the system

Conception hypothesis:

• The ESAO workstation communicates with only one test box which means that the
message parsing and sending does not need an address system.

• Parsing rules are stored in an external database in order to avoid having to change the
gateway source code any time instructions are added.

Communication interfaces:

We decided to separate the communication methods of the two interfaces as they are dif-
ferent. This also allows for better system scalability. If a communication interface is changed,
modifications will be contained within a class and won’t affect the rest of the code.

ClassesRadio_Packet and ESAO_Packet describe packets coming from the correspond-
ing interfaces that are described by the classes XBee_Controller and IDMK3_Controller.

XBee_Controller methods:

• sendPacket(packet: Radio_Packet): bool: This method sends an XBee packet over
the XBee interface and returns "false" if there is an error

• getNext(): Radio_Packet: This method retrieves the first XBee packet in the con-
troller’s packet buffer

• receiver(): void: This method receives sent packets from the test box side’s Xbee radio
interface

IDMK3_Controller methods:

• sendPacket(packet: ESAO_Packet): boolean: This method sends an IDMK3
packet over the IDMK3 interface and returns "false" if there is an error

Innovation Project 12

CHAPTER II. CONCEPTION

• getNext(): ESAO_Packet: This method retrieves the first IDMK3 packet of the
controller’s packet buffer

• receiver(): void: This method receives sent packet from the ESAO side’s IDMK3 in-
terface

The main class is Gateway. It is comprised of two controller instances XBee_controller
and IDMK3_controller.

Gateway methods:

• parse(packet: Radio_Packet): ESAO_Packet: This method retrieves the received
XBee packet, parses it, translates it to the corresponding ESAO packet and then re-
encapsulates it in order to send it to the ESAO.

• parse(packet: ESAO_Packet): Radio_Packet: This method retrieves the received
IDMK3 packet, parses it, translates it to the corresponding XBee packet and then re-
encapsulates it in order to send it to the test box.

2.4. Database for command translation

In order to retrieve the corresponding command codes between the ESAO and the test box,
we need a table to save all the equivalences. We chose to implement an SQL database because
of its ease of use and modification. To this day, we are still working out details with Sterela
so the database is not implemented, but the architecture is set. We will have to implement
C++ methods to retrieve all the information we need. Moreover, other methods will allow easy
updating of the database by passing arguments which have to be added or deleted from it. The
QtSQL module will allow us to implement this database and its interactions.

The following figure (II.10) is a class diagram that represents link between data in the SQL
database.

Figure II.10: Database schematic

However the current system does not allow a one-to-one correspondence between ESAO
and Test Box commands. In some case, multiple ESAO commands can request information

Innovation Project 13

CHAPTER II. CONCEPTION

that correspond to multiple fields of a single Test Box command. In this way it’s impossible
to develop a scalable method in order to bypass this constraint without treating all of these
uneven correspondences individually. This problem is currently in the hand of STERELA.
We are currently working with Sterela on reworking Test Box commands to keep a one-to-one
correspondence with ESAO commands.

Innovation Project 14

CHAPTER III. DEVELOPMENT

III
Development

This section develops all the technical parts of the project. It mainly contains the software
methods analysis and functionalities regarding the conception specifications and the clients re-
strictions.

First of all and as we mentioned in the conception part, for this proof of concept STERELA
has decided that the gateway will communicate with only one test box. Therefore in our case,
the destination address is always the same. That is why we configure the module once using
the XCTU program. We configure the network address, network role, packets static destination
address and mode. We have chosen the Transparent mode for its simplicity. It is adapted to
communication between two nodes. If STERELA decides to keep the XBee technology on the
production stage, the XBee_mode must be changed to API mode. In this mode the module
can be configured dynamically while the program runs and will be able to communicate to
different end-points. However, API mode is more complex to use.

1. Qt Framework
It is important to define the development method. As we were working in sub-teams, we

defined a set of standards in order to limit problems and gain time on the integration part
of the project. In this way, STERELA suggested Qt to us. This platform includes an IDE
and implements several frameworks which aim to simplify variable manipulations, and also
provide us with useful libraries for serial and UDP communication. Moreover STERELA is
already using this platform for their projects so using it would avoid potential difficulties like
understanding the code and software maintenance in the future.

2. Radio_Packet class
The following figure (III.1) shows the packet structure of the communication between our

gateway and the test box. This communication protocol was designed by STERELA. The
information we found relevant to a radio module packet are the address, action and attributes.
We can recompute all the other fields if necessary. That is why our Radio_Packet class has
only 2 attributes (an address and a payload field which group action and attribute values).
The constructor for this class also only needs these fields.
We also prepare the getters and setters for these variables.

Innovation Project 15

CHAPTER III. DEVELOPMENT

Figure III.1: Packet structure of the communication between the gateway and the test box

3. XBee_Controller class
XBee_Controller is responsible for the XBee module communication. This class only has

two attributes. The serial port for the communication with the XBee module and the queue
where we store received packets.

It has a constructor which requires an instantiated QSerialPort object from the Qt mod-
ule. The constructor configures and opens the serial port.

The sendPacket method takes a Radio_Packet as input. To begin it checks if the port is
open. It then takes the address and payload information of the given Radio_Packet, formats
an array of bytes according to the structure defined by STERELA (see figure inRadio_Packet
class part), and sends it to the text box. If in future, if STERELA decides the gateway will
communicate with many test boxes, this method must be adapted to take that into account.

The receiver method is the body for our receiver thread. This thread has two roles. Its
first role is to retrieve all packets from the XBee serial port. To do so, this thread takes each
received byte one by one and checks for the start bits. Once it gets the start bits (defined in
STERELA’s communication protocol), it retrieves each of the given fields of the packet (version
length, address, payload using length, end bits, and CRC), checks if the CRC is valid and adds
it to the received packets queue. A CRC is a series of bits which defines the content of the
packet. Given a packet, we get its content, compute its CRC (or Checksum), and compare it
to the received CRC. If the two values are the same, the packet has been received correctly,
otherwise it means it has been altered. The second role of this thread is to add correct packets
to the class’ queue.
This thread can without a doubt be optimized. We went for functionality over optimality.

Innovation Project 16

CHAPTER III. DEVELOPMENT

As mentioned previously, after this proof of concept, this thread must be modified to be
able to retrieve packets from multiple users as the structure of the frame won’t be the same.

The getNext method retrieves the next packet from the queue only after having verified
that such a packet exist and was well received using the method packetReady meaning the
queue is not empty.

4. Radio_Packet and XBee_Controller tests
To test those two classes, we send packets to our own module from our own module (source

address = destination address). Given an action and attributes, we are able to reconstruct the
whole packet correctly. This packet is unpacked well by our receiver thread. We also have a
meeting with the client to test out the communication with their test box.

5. ESAO_Packet class
The figures below (III.2 and III.3) show the packet structure of the communication between

the gateway and the ESAO workstation. We use the IDMK3 communication protocol designed
by Airbus.

The information we found relevant to the ESAO packet is actually every field as their content
let us identify the command being sent so that we can respond with the correct answer. That
is why our ESAO_Packet class has only a packet attribute as it is a array of bytes and has
one method to retrieve each field. The constructor of the class helps recreating the packet to
be sent from a already completed array of bytes or by giving it each field making up the packet.
We also implement the getters and setters for these variables.

Innovation Project 17

CHAPTER III. DEVELOPMENT

Figure III.2: Information of the different fields of an IDMK3 frame

Figure III.3: Packet structure of the communication between the gateway and the ESAO

Regarding the setters:

• The setPacketmethod allows us to build the packet using all the fields fromDS1 toDS4

Innovation Project 18

CHAPTER III. DEVELOPMENT

or from one already formed ESAO packet. They take into account headers parameters of
the frame.

Regarding the getters:

• The getPacket method returns the current packet

• Getters which return each specific field of the packet:

– The getFrameType returns the command type

– The getFrameID returns the sub-command id

– The getIPAddress returns the IP address of the sender

– The getPort returns the port used by the sender

– The getFirstParam returns the field 1 of DS3

– The getSecondParam returns the field 2 of DS3

– The getThirdParam returns the field 3 of DS3

– The getPayloadLength returns the length of the payload

– The getPayload returns the payload

6. IDMK3_Controller class
IDMK3_Controller is responsible for the IDMK3 communication. This class has four at-
tributes. The socket which receives the incoming traffic, the address and port destination of
our messages and the queue where we store the received packets.

It has a constructor which requires an instantiated QObject from the Qt module. The
constructor takes the IP address and the port, configures and opens the UDP socket to listen
on the given port. We also implement the getters and setters for these variables.

The sendPacket method takes an ESAO_Packet as input then sends the already format-
ted QByteArray attribute of the given ESAO_Packet (headers + payload). It is more of
a response method as it uses the IP address and the port of the sender of the last received
packet for destination. This implementation works well in our case as the one to initiate the
communication with our gateway is always the ESAO and one gateway is only linked to one
ESAO.

The receiver method retrieves the incoming UDP packet from the ESAO to our socket de-
fined by the IP address and the defined port. As Airbus uses a fixed routing table, our gateway
is 172.30.44.1:8888. Each reception retrieves all pending packets. Thus the packets are stored
in a queue with the first packet being processed at one time each

The getNext method returns the current packet to be processed taking into account the
FIFO mode only after having verified that such a packet exist and was well received using the
method packetReady meaning the queue is not empty.

Innovation Project 19

CHAPTER III. DEVELOPMENT

7. ESAO_Packet and IDMK3_Controller tests
To test those two classes, we send packets to our own module from our own module (source

address = destination address) then send an answer if, given each field, we are able to retrieve
the corresponding and wanted field in the correct format. The reconstruction of the whole
packet is therefore also correct in our own system. We also have a meeting with the client to
test out the communication with the ESAO to insure that the format is correct and that both
systems understand each other.

8. Gateway class
As defined in the conception part, the Gateway class is the real core of our project. It is

the one responsible for translating one packet coming from the ESAO in the format defined
by Airbus using the IDKM3 protocol into a packet to be sent to the test box by Xbee in the
format defined by STERELA then doing it the other way to provide the answer of the test
box to the ESAO. This is done by the methods named parse which return the corresponding
packet to be sent depending on the given packet type.

One of the requirements of our project (even though it is only a proof of concept) is to
have it be scalable. Therefore, the ability to increase the number of commands received from
the ESAO and then sending the correct command to the test box to return the correct answer
is critical in our implementation. Furthermore, the ability to only change the data part and
not the source code of our gateway for each upgrade and modification is also heavily valued.
This is why we chose to use an external database which is more user friendly to implement the
different commands.

This database is designed to be easy to use such that every command is written in a string
style regardless of its actual format in their respective protocol. Therefore, even though both
communication protocols use byte arras, the abstraction task is given to the communication
modules which are in our case the Xbee_Controller and IDMK3_Controller. So the
packet translation methods find the correct values for each field in both format following the
implemented database.

However, due to the many differences between the commands and responses format of Airbus
and STERELA, we could not implement a usable database to make the correspondence from
Airbus to STERELA at the time of our first prototype test.

9. Integration tests
Approaching the project deadline, we had the opportunity to visit Airbus campus at Saint-
Martin-du-Touch near Toulouse in order to realize different tests of the first version of the
system.

Innovation Project 20

CHAPTER III. DEVELOPMENT

9.1. Material used to conduct tests

• 1 PC running on Linux which was simulating one part of gateway to send commands.
The same program also permitted to display the payload of the test box answer.

• 1 PC running on Linux which was simulating one part of gateway to receive commands
from the ESAO and then answering it following the given command. The same program
also permitted to display the received and sent packets.

• 1 modified A33EPSE board (part of the test box) brought by STERELA which permitted
to receive command, process it and send the corresponding answer.

• 2 radio modules Digi XB24CDM

9.2. First test

Purpose

The purpose of this test was to test the communication between the gateway and the test
box.

Procedure

The communication was set up using the XB24CDM modules. Commands sent by the PC
were well received by the test box (III.4) which gave the expected answers. Moreover, answers
were well received by the PC and displayed.

Figure III.4: Picture of the test box during the tests session

Innovation Project 21

CHAPTER III. DEVELOPMENT

Conclusion

We can conclude that the first test was very convincing and the code’s first version was
conclusive.

9.3. Second test

Purpose

The purpose of this test was to test the communication between the gateway and the ESAO.

Procedure

We sent commands to the PC from the ESAO (III.5) using a graphical interface. De-
pending on the received commands, the PC was able to send back the expected answer in a
comprehensible format for the ESAO which was also able to display it.

Figure III.5: Picture of the ESAO workstation computer during the tests session

Conclusion

We can conclude that the second test was very convincing and the code’s first version was
conclusive.

Innovation Project 22

CHAPTER III. DEVELOPMENT

9.4. Third test

Purpose

The purpose of this test was to test reliability of the Digi radio module communication
regarding the distance.

Procedure

Similarly to the first test procedure, we set up the communication between gateway and
test box in order to exchange message and make the distance between them fluctuate. The
messages sending were realized from different locations inside the airplane construction site.

Conclusion

Those tests observed that the link between the gateway and the test box is highly reliable
but the latency between sending and receiving could be unsatisfactory as it could reach 2 sec-
onds. However, the distance between the emitter and receiver were not a significant factor in
latency values.
Complementary tests will allow us to understand this latency source (radio module, PC process-
ing). It’s important to note that the test box is increasing the latency because of the necessary
tests it executes each it receives a command (resistance measurement, phase order test).

9.5. Tests conclusion

These real-conditions tests allowed us to verify and validate the communication between
each part of the final proof of concept. Further tests will be scheduled in order to make the
gateway mediate the communicate between the ESAO and the test box when the database is
completed. Moreover STERELA will have to provide us with the hardware for the gateway.

Innovation Project 23

CHAPTER IV. CONCLUSION

IV
Conclusion

This project gave us the opportunity of participating in a real industrial project with a
direct impact for our client. We could put all of our software, communications, network and
project management skills that we had acquired through the last years at INSA into practice.

Having a multi-background team enabled the different design and development tasks to
be shared effectively. During the software conception and development, we mainly focused on
maintainability and scalability which are important factors to take into account for a proof-of-
concept, because STERELA will probably proceed to update the commands/responses associ-
ation between the ESAO workstation and the test box.

The real tests made at Airbus allowed us to validate the robustness of the communication
between the test box and our gateway but also the communication between the ESAO worksta-
tion and our gateway. We lacked the ability to test the entire device, mainly the parsing part
of the gateway and its role as a communication intermediary between the two entities (ESAO
workstation and test box). The final test with the whole architecture is to be done the week
following our presentation.

If STERELA and Airbus decide to improve or add some new functionalities to our gateway,
we hope that they will ask future ISS students to continue the work we started and keep this
fruitful partnership alive.

Innovation Project 24

List of Figures

I.1 Gantt diagram of the project . 3

II.1 Hardware scheme of our Gateway . 6
II.2 XBee S2C DigiMesh 2.4 . 6
II.3 SparkFun XBee Explorer USB . 7
II.4 USB link of the XBee module . 7
II.5 Complete electrical diagram of the XBee adapter proposed by the constructor . 8
II.6 Simplified electrical diagram of the XBee module, adapter and USB link package 9
II.7 Use case diagram . 10
II.8 Interactions diagram for the Gateway with the ESAO and the test box 11
II.9 Class diagram for the system . 12
II.10 Database schematic . 13

III.1 Packet structure of the communication between the gateway and the test box . . 16
III.2 Information of the different fields of an IDMK3 frame 18
III.3 Packet structure of the communication between the gateway and the ESAO . . . 18
III.4 Picture of the test box during the tests session 21
III.5 Picture of the ESAO workstation computer during the tests session 22

25

	Introduction
	Context
	Specifications
	Timeline
	Financial aspects

	Conception
	Hardware Conception
	General overview of the complete hardware system
	XBee module features
	Electrical diagram of the XBee module, adapter and USB link package

	Software Conception
	Use case diagram for the Gateway
	Interaction diagram for the Gateway system
	Class diagram of the Gateway system
	Database for command translation

	Development
	Qt Framework
	Radio_Packet class
	XBee_Controller class
	Radio_Packet and XBee_Controller tests
	ESAO_Packet class
	IDMK3_Controller class
	ESAO_Packet and IDMK3_Controller tests
	Gateway class
	Integration tests
	Material used to conduct tests
	First test
	Second test
	Third test
	Tests conclusion

	Conclusion

